Developmental Changes in GABAergic Mechanisms in Human Visual Cortex Across the Lifespan
نویسندگان
چکیده
Functional maturation of visual cortex is linked with dynamic changes in synaptic expression of GABAergic mechanisms. These include setting the excitation-inhibition balance required for experience-dependent plasticity, as well as, intracortical inhibition underlying development and aging of receptive field properties. Animal studies have shown that there is developmental regulation of GABAergic mechanisms in visual cortex. In this study, we show for the first time how these mechanisms develop in the human visual cortex across the lifespan. We used Western blot analysis of postmortem tissue from human primary visual cortex (n = 30, range: 20 days to 80 years) to quantify expression of eight pre- and post-synaptic GABAergic markers. We quantified the inhibitory modulating cannabinoid receptor (CB1), GABA vesicular transporter (VGAT), GABA synthesizing enzymes (GAD65/GAD67), GABA(A) receptor anchoring protein (Gephyrin), and GABA(A) receptor subunits (GABA(A)alpha1, GABA(A)alpha2, GABA(A)alpha3). We found a complex pattern of different developmental trajectories, many of which were prolonged and continued well into the teen, young adult, and even older adult years. These included a monotonic increase or decrease (GABA(A)alpha1, GABA(A)alpha2), a biphasic increase then decrease (GAD65, Gephyrin), or multiple increases and decreases (VGAT, CB1) across the lifespan. Comparing the balances between the pre- and post-synaptic markers we found three main transition stages (early childhood, early teen years, aging) when there were rapid switches in the composition of the GABAergic signaling system, indicating that functioning of the GABAergic system must change as the visual cortex develops and ages. Furthermore, these results provide key information for translating therapies developed in animal models into effective treatments for amblyopia in humans.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملP152: Functional and Structural Brain Changes across Childhood Traumatic Events
Although childhood is connected with high neuroplasticity changes, but because of the immaturity of the neural and cognitive systems, it is ready to grow developmental deviations and future susceptibility for neuropsychological disorders. Young children face cognitive, emotional, and linguistic limits that may lead them more vulnerable to post-traumatic stress disorder (PTSD). PTSD prevalence d...
متن کاملO7: Functional Characterization of Human GABAA Autoantibodies in the Context of Limbic Encephalitis
Limbic encephalitis is an adaptive autoimmune disease, induced by different autoantibodies, which target extracellular neuronal epitopes, such as NMDA or GABAB receptors1,2. Recently our group found another human antibody, which binds to the α1 subunit of the GABAA receptor. Since the GABAA receptor is responsible for the majority of fast inhibitory neurotransmission, we investigated chan...
متن کاملTrajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex
In both humans and rodents, decline in cognitive function is a hallmark of the aging process; the basis for this decrease has yet to be fully characterized. However, using aged rodent models, deficits in auditory processing have been associated with significant decreases in inhibitory signaling attributed to a loss of GABAergic interneurons. Not only are these interneurons crucial for pattern d...
متن کاملStability and plasticity of auditory brainstem function across the lifespan.
The human auditory brainstem is thought to undergo rapid developmental changes early in life until age ∼2 followed by prolonged stability until aging-related changes emerge. However, earlier work on brainstem development was limited by sparse sampling across the lifespan and/or averaging across children and adults. Using a larger dataset than past investigations, we aimed to trace more subtle v...
متن کامل